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1. Introduction 

While a number of semiempirical treatments have been based on the CNDO and 
INDO formalisms [1-4], little attention has as yet been paid to the more rigorous 
[2] NDDO approximation [1]. The reason for this neglect clearly lies in the prob- 
lem of evaluating the bicentric electron repulsion integrals. In CNDO and INDO, 
most of these are neglected while the rest are assumed to have a common value 
(YAB) for a given pair of atoms, A and B. In NDDO, on the other hand, there are 
twenty-two nonvanishing integrals between each pair of dissimilar first-row atoms, 
all of which have to be evaluated separately. It is not easy to see how this can be 
done in a self-consistent manner. 

Published NDDO studies [5, 6] have met this difficulty by using theoretical values 
for the integrals [7], evaluated from Slater-Zener AOs. This procedure is accept- 
able if the objective is merely an approximation to the results that would be given 
by Roothaan[8]-Halll-9] (RH) calculations, as in the original CNDO/2 and INDO 
versions of Pople et a[. [1]. If, however, one wishes to reproduce the observed 
properties of molecules, in particular their heats of atomization, the integrals must 
[2] be modified to allow for the effects of electron correlation, following some 
procedure analogous to that suggested by Pariser and Parr[10]. 

A scheme of this kind was developed [11] in these laboratories but subsequent 
study showed it to suffer from certain inconsistencies. Here we suggest a general 
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and self-consistent formalism for the NDDO electron repulsion integrals, based on 
their expansion in terms of multipole-multipole interactions. While this approach 
has been suggested before [12, 13], it has not, as far as we know, been implemented 
in a specific semiempirical model. 

2. Definitions and Notation 

The two-electron repulsion integral (/~v, 2a) is defined by: 

(ktv, ,~t7) =~ S Ou(1)c~v(1)(e2/r12) ~bx(2)~b (2) dz 1 d'c 2 (1) 

where e is the electronic charge, r12 is the interelectronic distance, and dz 1 and dz 2 
are the volume elements for integration over the coordinates of electrons 1 and 2, 
respectively. The functions q~ are the atomic orbitals (AOs) of our basis, the Greek 
subscripts denoting the particular AOs involved. As our basis functions, we 
choose Slater-Zener orbitals which are products of a radial function R,t(r ) and a 
normalized real spherical harmonic y~,, (0, (~), with quantum numbers n, l, m. 

c~,,,,, = R,l(r)ylm(O , (9) (2) 
R,l(r) = (2(,1), + 1/2 [(2n) !] - 1/2rn - 1 e- ~.,r (3) 

y~o(O, qb) = [(2/+ 1)/4zc] 1/2p,(cos 0) (4) 

[2z+ I 0)fcos Imi'  for m>O 
(Z+lml)!d /.sin ]ml b form<0 (5) 

Here ~,~ is the orbital exponent of the Slater AO, and PI "l (cos 0) an associated 
Legendre function. In the present study, we shall consider s- and p- basis AOs only 
( /=0,  1). 

In the NDDO approximation (neglect of diatomic differential overlap), the 
integrals (#v, 2a) vanish unless ~,  and ~b v are both AOs of the same atom (A), and 
~ ,  q5 are both AOs of the same atom (B). The non-zero NDDO repulsion 
integrals thus are either one-center (A = B) or two-center (A r B) integrals. The 
one-center integrals can be determined from experimental atomic data by well- 
known procedures [ 14, 15] which do not concern us here. The two-center integrals 
represent the electrostatic interactions between the charge distributions p(1) at 
atom A and p(2) at atom B. 

p(1) = eq~(1)~bv(1) (6) 

p(2) = eq~(2)~b~(2) (7) 

For the calculation of the two-center repulsion integrals, we use the coordinate 
system indicated in Fig. 1. Atoms A and B (interatomic distance RAB) are the 
origins of two local Cartesian coordinate systems (x, y, z), with the z-axes aligned 
along the internuclear axis and pointing in the same direction. The x-axes in both 
systems are parallel to each other, as are the y-axes. For general references to any 
of the Cartesian coordinates, the symbols ~ and fl will be used (~, f l=x ,  y, or z). 
Atoms A and B are also taken as the origin of local spherical coordinate systems 
(r, 0, qS), with the usual relations between Cartesian and spherical coordinates. 



A Semiempirical Model for the Two-Center Repulsion Integrals in the NDDO Approximation 

X I X2 

91 

<._ . . . .  RAB ---> 

~ Z  2 

Fig. 1. Local Cartesian coordinate system used in the calculation of two-center electron repulsion 
integrals involving atoms A and B 

The coordinates of electron 1 (subscript 1, e.g. xl) always refer to a coordinate 
system centered at A, and, correspondingly, the coordinates of electron 2 (sub- 
script 2) to a system centered at B. As a general rule, superscripts A or B assign a 
particular symbol to atom A or B, while the electron is denoted by a number in 
parentheses ((1) or (2)). Thus (a s is the orbital exponent of the 2s orbital of atom A. 
We define the multipole moments Ml,  , of a charge distribution p(r,  O, O) by: 

M,m =~d~,.r'y~.~(O, 4))p(r, O, ~)& (8) 

This definition in terms of normalized real spherical harmonics will be useful in the 
following derivations, it is equivalent to the commonly accepted definition [16] 
of the multipole moments (e.g. of the quadrupole moment as a traceless tensor). 
For charge distributions arising from an sp 3 basis set, we only have to consider 
the multipole moments M~m up to /=2,  since all higher moments vanish by 
symmetry. Table 1 contains the values for the coefficients dz, , in (8), up to l=  2, 
along with an alternative, more familiar notation [16] for the multipole moments 
(monopole q, dipoles #~, quadrupoles Q~). Both notations (Ml ,  , and q,/2~, Q~) 
will be used interchangeably. 

Table 1, Coefficients dr, . and notation for the multipole 
moments Mira l m dlm notation 

0 0 (4n) 1/2 q 
1 0 (4n/3) 1/2 #~ 

1 1 (4n/3)~/2 #x 
1 1 (4n/3) 1/2 uy 

2 0 (4n/5) 1/z Q= 
2 1 (3n/5) 1/2 Qxz 

2 - 1 (3n/5) I/z Qyz 
2 2 (3n/5) 1/2 �89 - Qyy) 
2 - 2 (3n/5) 1/2 Qxr 
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3. Derivation of the Semiempirical Formalism 

We first calculate the two-center NDDO repulsion integrals under the assumption 
that the two interacting charge distributions do not overlap: 

(pv,  J~o-) = S ~ p ( 1  , r l ,  01,  q~1)rt-zlp(2,  r2 ,  02 ,  q~2) d"Cl d'~2 (9) 

The solution of this problem is well-known. For non-overlapping charge distri- 
butions, the Neumann expansion for the inverse interelectronic distance r12 ~ 
can be simplified to a bipolar expansion [17]. After introduction of normalized 
real spherical harmonics, we obtain: 

/rain 

r;;: 2 
11=0 / 2 = 0  m :  --lmln 

• [(2ll + 1)(212 + 1)(ll -[-Iml) (12 + ]ml)!(11 --Im[) (1= - [ml )~ ] -  1/2 
• rlllrt22JR~la-12-x Yllm(Ot, ~)l) r t2m(02,  ~b2) (10) 

where lmi . is the smaller of11 and l 2 . Introducing (10) into (9), the repulsion integral 
(/~v, 2a) can be separated into a product of two integrals, each of which depends on 
the coordinates of one electron only. Comparison with (8) shows that these two 
integrals are related to the multipole moments of the two interacting charge 
distributions: 

rr l ) - l l - 1 2 -  etd~,,~.aB 1Mllm(1)Mt~m(2 ) (11) 
/1=0 12=0 m =  - / r a i n  

ft~,,, = 4re(- 1)t2+[ml(11 + 1 2 ) !  

x [(2la + 1)(2l 2 + 1)(11 + [m[)!(l 2 + [ml)Y(l~ -Irnl)!(l 2 -[m[)!] - a / 2 d ~ d ~  (12) 

Values of the coefficientsf~:m are listed in Table 2, for all relevant combinations of 
l I , 12, and m. 

1 s l 2 m f~lz2,, 

0 0 0 I 
0 1 0 - 1  
0 2 0 1 
1 0 0 1 
1 1 0 - 2  
1 2 0 3 
2 0 0 1 
2 1 0 - 3  
2 2 0 6 
1 1 _+1 1 
1 2 + 1  - 2  
2 1 -L-_I 2 
2 2 + 1 - 16/3 
2 2 _+2 4/3 

Table 2. Coefficientsfhz2., (12) 
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The previous derivation provides us with a physical representation of the NDDO 
repulsion integrals as a sum of multipole-multipole interactions. Eq. (11) has the 
correct asymptotic behaviour for large interactomic distances (RAB--+ o9). For 
some specific integrals it also [12] leads to reasonable results even for medium 
distances (RAB > 1.SA). For small interatomic distances, however, Eq. (11) breaks 
down since the assumption of zero diatomic overlap is no longer valid. The 
classical expression (11) must therefore be modified semiempirically to ensure 
proper behaviour at small distances. For the limit RAB = 0, in particular, the modi- 
fied expression should reproduce the values of the corresponding one-center 
repulsion integrals which are obtained from experimental atomic data. 

A guide to the necessary modifications is provided by those used in previous 
semiempirical methods at the CNDO and INDO levels. Here the nonvanishing 
two-center repulsion integrals (##, 22) are treated as pure monopole-monopole 
interactions between the charge distributions ## and 22. The MINDO-method 
[4, 18, 191, for example, approximates these integrals by Klopman's [20] generali- 
zation of the Dewar-Sabelli[21a]-Ohno[21b] formula: 

(~#,)~fL)MINDO = e2 [R~B + (/gA + p0B)2] - i/2 (13) 

This expression has the correct asymptotic form (ezRA 1 ) f o r  large internuclear 
distances and also for R AB = 0, the additive terms pa and po B being chosen so that (13) 
gives the correct average of one-center repulsion integrals when RAB vanishes. 
Following this lead, we have developed an analogous treatment of multipole- 
multipole interactions. 

The nonvanishing multipoles Mzm of the two charge distributions are represented 
by configurations [M/m ] of 2 / point charges of magnitude e/2k The interactions 
[Mtlm, M/2m] between the multipoles are then calculated by applying the Klopman 
formula to each of the repulsions and attractions between the point charges 
representing the two interacting multipoles, and by summing over all these re- 
pulsions and attractions. The two-center NDDO repulsion integrals are given as 
the sum over these semiempirical multipole-multipole interactions : 

(#v, 2a)= ~ ~ z~n [M/lm(1), Ml2m(2)] (14) 
/1 = 0  12 = 0  m =  - - / m i n  

We now have to specify the relevant point charge configurations. 

The monopole [q] of a charge distribution ss or p~p~ is naturally represented by a 
single point charge of magnitude e at the respective nucleus. 

The dipole [#~] of the charge distribution spa is represented by two equal but 
opposite point charges, +e/2, located on the a-axis on opposite sides of the 
nucleus. 

Quadrupole fields are generated by sets of four equal point charges, of magnitude 
e/4 and alternating signs, at the corners of a rhomboid, i.e. two equal but opposite 
dipoles. A linear configuration [Q~,] is used for the charge distributions p,p~, 
and a square configuration [Q~] for p~pp. 
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Fig. 2. Point charge configurations corresponding to various multipoles 

Figure 2 shows the various point charge configurations. In each case, the origin of 
the coordinate system corresponds to the nucleus of the atom at which the con- 
figuration is centered. Note that two point charges of magnitude e/4 coincide at 
the origin in the case of the linear configuration [ Q j ,  leading to a net charge of 
magnitude e/2. 

In order to determine the charge separations D t in the dipole and quadrupole 
configurations (see Fig. 2), we require the multipole moment of each point charge 
configuration to be equal to that of the corresponding charge distribution. Explicit 
formulae for the multipole moments are easily derived from the definitions in the 
literature [16] and in the present paper (cf. Eq. (8) and Table 1). Table 3 contains 
the resulting expressions for the multipole moments of the relevant charge distri- 
butions (I) and of the corresponding point charge configurations (II). The formulae 
(I) refer to charge distributions (6), (7) in which both basis AOs share the same 
quantum number n. Comparing Eq. (I) and (II), we obtain for the charge separa- 
tions D~ 

D1 2n+l  (4?" /" ~,,+1/2 
_ . -  . . . . .  p ,  ( 1 5 )  (~ _[_~" ~2n+2 

\ n$ "b Rp I 
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, /(2n + 1)(2n + 2) 
D2 20 (,p- 1 (16) 

Note that the charge separation D 2 turns out to be the same for the linear and 
square quadrupole configurations, [ Q j  and [Q~a], and that the linear configura- 
tion [ Q j  correctly reproduces the quadrupole moment of the distribution p~p~ 
along the ~-axis as well as perpendicular to it. 

Having defined the geometry and orientation of the point charge configurations 
and knowing the interatomic distance RAB, we can calculate all the distances R o 
between the point charges i and j of two configurations at atoms A and B re- 
spectively. Applying the Klopman formula, the semiempirical multipole-multipole 
interactions are given by: 

e 2 2 tl 2t2 
[Rij + (p,, + p~)2] - ,/2 (17) [M,,,,,(1), M,v,,(2)] --2t1+,2 2 ~ 2 A 

i=1 j = l  

In (17), we still have to specify the additive terms p~. With an sp3-basis set, there 
are three such terms for each element, characteristic of monopole, dipole, and 
quadrupole. We choose these terms so that Eq. (17) yields the correct one-center 
limit for the monopole-monopole, dipole-dipole, and quadrupole-quadrupole 
interactions. For a homonuclear pair of atoms and RAB= 0, we thus have the 
conditions : 

[qa,  qa ]  . A A A 
= ( ] s s ~ - ( S  S , sAs A) (18) 

-h,p=(S p=, p~ (19) 

IOn5 ,  - a -  a a  a a  Q,a] - hpp- (p, pa, p~ pp) (20) 

In order to calculate pA, for example, we insert the explicit expression for [qA, 
qa] into (18) and solve for pA: 

e 2 
Po A = 2gA (21) 

In the case of pA and pa, the resulting explicit expressions obtained from (19) and 
(20) cannot be solved analytically. Expansions in power series lead to the approxi- 
mate solutions: 

Ve2(DA)2 q 1/3 
~A~.~ 1 |  1 [ 
/)1 ~ 2 ~  ~psAp ~ (22) 

Table 3. Expressions for the multipole moments of the relevant charge 
distributions (I) and of the corresponding point charge configurations (II) 

Charge Multipole Formula (I) Formula (II) 
distribution moment 

2n + 1 e(4~,s~,v) "+ a/2 
SPa #~ X~ (~ +?" ]2n+2 eD1 

ns ~npJ 
p~p~ Q,~ (2n + 1)(2n + 2)e/(10~,2p) 2eD~ 
P~P, Qaa -(2n+ l)(2n+ Z)e/(ZO~p) -eD~ 
p~pa Q~p 3(2n + 1)(2n + 2)e/(40~zp) 7eD23 2 
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Fig. 3. Interaction between two point charge configurations, [#z, #=] 
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These approximate values are taken as the starting point for an iterative numerical 
solution, by which pA and p~ can be determined to any accuracy desired. 

With the preceding definitions for the charge separations D~ and the additive terms 
&, we are ready to write down explicit semiempirical formulas for the two-center 
NDDO repulsion integrals. 

Consider for example the integral (Spz, spz ). For a charge distribution sp~, the 
dipole #~ is the only nonvanishing multipole. Thus the expansion (14) reduces to: 

(sp~, spz)= Epz, #z] (24) 

Figure 3 shows the interacting point charge configurations. Using Eq. (17), we 
obtain by inspection: 

E # z , & ] = ( e Z / 4 ) [ ( R a g +  A B 2 a B 2 -1/2 D r - D 1 )  + ( p t + p l )  ] 
_ (e2/4) [-(RA. + D A + D~)2 + (pA + pB)23 - l/2 

_ (e2/4) [(RA B-  D A_ 98)2 + (p~ + pB)2] - 1/2 

+ ( e 2 / 4 ) [ ( R A R _ D A + D ~ ) 2  +(pA+p~)2]-1/2 (25) 

Explicit expressions for the other NDDO repulsion integrals are derived anal- 
ogously. The resulting formulae are collected in the Appendix, which gives the 
expansions of all nonvanishing NDDO repulsion integrals in terms of multipole- 
multipole interactions (cf. (14)), and the semiempirical equations for these inter- 
actions (cf. (17)). 

This semiempirical model for the two-center NDDO repulsion integrals involves 
five parameters for each element, namely the charge separations, D 1 and D2, and 
the additive terms, P0, Pl, and P2. For hydrogen, there is of course only one 
parameter, Po- It should be pointed out that these parameters are calculated from 
quantities (orbital exponents and one-center repulsion integrals) which occur 
elsewhere in any semiempirical MO treatment. No additional independent 
parameters are involved in our expressions for the repulsion integrals. 

The Hartree-Fock (orbital) approximation neglects Coulombic correlation be- 
tween the motions of electrons. As a result, the interelectronic repulsions are 
overestimated. In semiempirical treatments of the MINDO type [2, 18], this error 
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Table 4. Charge separations D~ and additive terms p~ for carbon 
Parameter Value (A) 
D] 0.427284 
D~ 0.362563 
p~ 0.588660 
p~ 0.430254 
p~ 0.395734 

is compensated by adjustment of the electron repulsion integrals. The values 
found in this way must therefore be smaller than those calculated analytically from 
the appropriate orbital functions and a similar relationship should hold in the case 
of the MNDO treatment [22]. 

The relationship between the semiempirical and theoretical values for the various 
integrals is therefore a matter of some interest since it indicates the magnitude of 
the correction that is being made to allow for the effects of correlation. We have 
therefore calculated these values for a wide range of orbital exponents, covering 
combinations of the elements H, C, N, O. Since the trends are similar in all cases, 
we report numerical results only for carbon, using the orbital exponents found in 
the final MNDO optimization, [22] i.e. : 

~c S = ~cp = 1.787537 (26) 

The values for the one-center integrals are those used in the MINDO/3 method, [4] 
found by an extension of Oleari's [ 14] procedure. The calculated charge separations 
(D~) and additive terms (p~) are listed in Table 4. The semiempirical integrals were 
computed from the formulae in the Appendix and the analytical integrals from the 
exact equations. [7] 

In Figure 4, semiempirical (S) and analytical (A) values for six of the repulsion 
integrals are plotted as functions of the interatomic distance Rcc. Several con- 
clusions follow. 

a) The absolute value of each semiempirical integral is always less than that of 
the corresponding analytical integral. The difference increases with in- 
creasing overlap between the interacting charge distributions (i.e. usually 
with decreasing interatomic distance). 

b) For each integral, the semiempirical and analytical curves show a very 
similar dependence on the interatomic distance. Extrema and zero points, 
whenever existing, occur at about the same distance. 

c) At large interatomic distances (R,. > 3A) the semiempirical and analytical 
integrals are almost identical, and they converge to the same asymptotic 
value (11) in the limit Rcc-* oo. It can be shown by expansions in power series 
that the semiempirical formulae (see Appendix) always approach the 
corresponding classical formulae in the limit RAB--~ oO. This of course is due 
to our requirement that the multipole moments of the charge distributions 
and of the corresponding point charge configurations should be equal. 

d) At intermediate interatomic distances (Rcc ~ equilibrium bondlength), the 
semiempirical integrals are appreciably smaller than the analytical ones. 
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Fig. 4. Semiempirical (S) and analytical (A) NDDO repulsion integrals (in EV) plotted as a function of 
the interatomic distance R~ (in A) 

e) 

This reduction is rather uniform for different types of integrals; cf. the ratios 
between the semiempirical and analytical integrals, listed in Table 5 for 
Rcc = 1.5. Also, if the integrals at medium interatomic distances are arranged 
in order of magnitude, the same order is obtained for both the semiempirical 
and the analytical values. 
The largest differences between the semiempirical and analytical integrals 
occur at small interatomic distances (Rcc<lA) and in the limit Rc~=0. 
Table 6 contains the calculated values for the nonvanishing one-center 
repulsion integrals, along with the values derived [ 14, 15] from experimental 
data. Evidently the semiempirical integrals are much closer to Oleari's 
values than the analytical ones. Due to the definition of the additive terms 
p~ in our model, the calculated semiempirical values for the integrals 9ss, 
h~p, and hpp reproduce Oleari's values exactly. Slight differences are found 
for the remaining integrals 9~p, 9pp, and gpp,; however the calculated 

(,uv, 2~) R.~x~ 

(ss, ss) 0.804 
(sp~, ss) 0.662 
(sp~, sp~) 0.625 
(spz, sp=) 0.632 
(P,Pz, sp,) 0.595 
(P~P=, P~Pz) 0.649 

Table 5. Ratios Ru~z~ of semiempirical and analytical integrals at R= = 1.5A 
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Table 6. One-center repulsion integrals for carbon 

Value of the integral (eV) 

Integral Olear i  semiempirical analytical 

9~s 12.23 12.23 17.67 
gsp 11.47 10.80 17.67 
gpp 11.08 10.58 19.04 
b'pp, 9.84 10.00 16.99 
h~, 2.43 2.43 3.91 
hpp 0.62 0.62 1.03 

semiempirical integrals show the same ordering as Oleari's values, whereas 
the analytical integrals do not. 

From the curves in Fig. 4 and the comparisons above, we conclude that the semi- 
empirical and analytical functions for each of the N D D O  repulsion integrals show 
fairly similar general features, e.g. with respect to their dependence on the inter- 
atomic distance. The differences between the two functions which occur at smaller 
interatomic distances seem to be qualitatively consistent with the intended inclusion 
of correlation effects into the semi-empirical repulsion integrals. 

4. Alternative Expressions for the Repulsion Integrals 

In our model for the repulsion integrals, there are some details which can be 
changed without perturbing the internal consistency of the model. We shall 
discuss a few of these options which we investigated but discarded, for the reasons 
indicated below. 

4.1 Mataga-Nishimoto Approximation 
The interaction between the point charges of two point charge configurations can, 
in principle, be treated by any function which behaves properly in the limits 
RAB--~0 and RAB~ oo. Instead of the Klopman approximation, we can e.g. choose 
the Mataga-Nishimoto (MN) approximation [23-] 

+ 1 -1 [q, q]MN=e2IRAB ~ ]  (27) 

In (27), the additive terms Po are again determined from the one-center repulsion 
integrals; they are, of course, numerically different from the corresponding terms 
in the Klopman approximation. Using the MN approximation for monopole- 
monopole interactions and our formalism for multipole-multipole interactions, 
explicit formulae can be developed for the N D D O  repulsion integrals. We have 
compared these values with the Klopman and analytical ones, again for a pair of 
carbon atoms. 
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Rcc/A 0.0 0.5 1.0 1.5 2.0 
AK/eV 5.44 4.78 3.23 1.81 0.97 
AMN/eV 5.44 7.45 5.93 3.98 2.64 

Table 7. Differences A between semiempirical 
and analytical integrals (ss, ss) in Klopman (K) 
and Mataga-Nishirnoto (MN) approximation 

In general, the MN integrals are smaller than the Klopman integrals. This can be 
seen e.g. from Table 7 which lists the differences between the analytical and semi- 
empirical values for the integral (ss, ss) in the Klopman and MN approximations 
(A~ and AMN, respectively) at several internuclear distances Rc~. 

Since the differences, A K or AMN, should be measures of the effect of electron 
correlation, one would expect them to decrease monotonically with increasing 
Rc~. The A K values conform to this but the AMN values do not, AMN being smaller 
for Rc~=0 than for 0.5 <R~ < 1.00A. These results seem to suggest that the MN 
values lead to an overestimate of the effects of electron correlation at medium 
distances in the case of the integral (ss, ss). 

Our basic assumptions ensure that the MN integrals show the correct asymptotic 
behaviour for RAB-~OO and also reproduce exactly the one-center integrals gss, 
hs~,, and hpp. The MN values for the remaining one-center integrals, g~p, 9pp, and 
9pp*, are, however, less satisfactory than the Klopman ones. At medium distances, 
the ratios between the semiempirical and analytical values are much less uniform 
in the MN approximation. Also, extrema and zero points of the MN integrals, 
whenever they exist, are found at smaller interatomic distances than those of either 
the Klopman or the analytical integrals. 

In view of these inconsistencies, the Mataga-Nishimoto approximation seems less 
attractive for the present purpose than the Klopman approximation. We therefore 
used the latter in MNDO [22]. 

4.2 Scaling of the Point Charge Configurations 

In our model, the point charge configurations [Mzm ] consist of 2 l point charges of 
magnitude e/2 z, with charge separations D~. If both the charges and their separations 
are scaled by a common factor p, leading to charges of magnitude e/(2p) z and 
separations pD~, the values for the repulsion integrals in the limits R A B ~ 0  and 
RAB--' oO remain unchanged. We have checked the dependence of the semiempirical 
integrals on the scaling factor p and found that the integrals are little affected by 
moderate changes in it. For example, changingp from 1 to 0.5 leads to an average 
change in the repulsion integrals at Rcc = 1.5/~ of only 0.04 eV. 

The exact value ofp is therefore not critical. We keep p equal to unity because the 
total charge involved in each configuration is then equal to the elementary charge e 
and because the distance of the point charges from the nucleus is close to the radial 
maximum (rmax) of the corresponding charge distributions. Thus for carbon, with 
orbital exponent (26), r max----0.591 A, while the distance of the point charges from 
the nucleus is 0.427 A for the dipole, 0.513 fl, for the square quadrupole, and 
0.725 A for the linear quadrupole. 
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4.3 Equal Additive Terms 

Finally, we considered the option of using only one additive term p A  p~ (cf. Eq. 
(21)) for all interactions, in order to simplify the formalism. While the numerical 
values for the integrals are affected only slightly by this modification, all the 
resulting changes seemed unfavourable, especially for small interatomic distances. 
Since the simplification does not even significantly reduce the time required to 
compute the integrals, we decided to retain a separate term p~ for each multipole. 
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Appendix. Explicit formulae for the NDDO repulsion integrals 

We first expand the NDDO repulsion integrals (#v, 2a) in terms of the multipole- 
multipole interactions [-M~, M l :  ]. The subscript n stands for either x or y (e.g. 
p~ is the p~-or py-AO). 

(ss, ss) = [q, q] 

(ss, p~p~) = [q, q] + [q, Q~] 

(ss, p~p~) = [q, q] + [q, Q j  

(p~p~, ss) = [q, q] + [Q~, q] 

(p~p~, ss) = [q, q] + [Q~, q] 

(p~p~, p~p~) = [q, q] + [q, Q~] + [Q~, q] + [Q~, Q~] 

(p~p~, pypy) = [q, q] + [q, Q~] + [Q~,  q] + [Q~,  Qyy] 

(P~P., P~Pz) = [ q, 

(P zP ~ , P~P ~) = [ q, 

(PzP~, P~P~) = [q, 

(sp~, ss) = [#z,  q] 

q] + [q, Q j  + [Q~,, q] + [Q,~, Q~] 

q] +[q, Q~J + [Q~, q]+[Q~z, Q~J 

q] + [q, Q J  + [Qz~, q] + [Qz~, Qz~] 

(sPz, P~P~) = E/G, q] + [#z, Q~ ] 

(Spz, pzpz) ~ [#~, q] + [#~, Qzz] 

(ss, sp~)= [q, #~] 

(p,p~, sp~) = [q, #3 + [Q~, #z] 

(p~p~, sp~) = [q, #z] + [Q~z, #~] 

(sp~, sp~)= [#~, #~] 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 
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(spz,sPz)=[#z,  #z] (45) 

(sp~, p,p=) = [#~, Q~=] (46) 

(P~Pz, sp~)= [Q~z, #~] (47) 

(P~Pz, P~Pz) = [Q,z, Q~z] (4s) 

(P~P,, P~Py) = [Q~,, Q~y] (49) 

Using the abbrevia t ions  

R = RA~ (50) 

" (51) aldz = Pll + Pl2 

we now give the expressions for the semiempir ical  mul t ipole-mul t ipole  interact ions:  

[q, q] = e 2 [ R  2 +ao2o]- 1/2  (52) 

[q, #z] = (e2/2)[( R + D~) 2 + ag , ]  - ,/2 _ e2/2[(R_ DB)2 + ao 2 ,] - ,/2 ( 5 3 )  

[q, Q=] = (eZ/2)ER 2 + (2D zB)2 + a22] - ,/2 _ eZ/2[(R 2 + a~2] - 1/2 (54) 

[q, Q=] = (eZ/4)E(R + 2D 2B)z + a22] - 1 / 2  _ _  e2/2[R 2 + ag2] - 1 / 2  

+ (e2/4)E(R _ 2DzB)2 + ao22] - ,/2 (55) 

[#':, #~] = (e2/2)[ R2 + ( D A -  DB) 2 + a2 i] - 1/2 
- -  (e2/2)ER 2 -I- A B 2 2 - 1/2 (D,  + D 1 )  + a t ,  ] 

(56) 

[#z, #z] = (e2/4)[( R + D A -  ~I]/)B]2 " " l l A  • n 2  1 - 1./2 

- (e2/4)E(R + D~ + DB) 2 + a~ 1] - 1/2 
_ (e2/4)[(R A B 2 - - D , - - D 1 )  +a21]  -1/2 
+ (e2/4)[(R A 2 - 1 /2  - D l + a ~ l l  

(57) 

[#~, Q==]=(_e2/4)E(R_DB2)2+(DA D2 )B 2 .J_al212 -1/2 
+ ( e 2 / 4 ) E ( R _ D ~ ) Z + ( D A +  D2 )B 2 + a , 2  ] 2  - ,/2 
+ (e2/a)E(R + D2B)2 + (D A_ DB)2 + a22]-  1/2 

- (e2/4)E(R + D~) 2 + (D~ + D2B) 2 + a22]-  1/2 

(5s) 

[#=, Q ~ ]  = ( _ e2/4)[(R + DA)2 + (2D 2B)2 q_ a22] - 1/2 
+ (e2/4)[(R _ DA)2 q_ (2DB)2 + a22] - 1/2 
+ (e2/4)[(R + D})2 + a22] - ,/2 
_ (e2/4)[(R_ DA)2 + a22] - 1/2 

(59) 

[#z, Q=] = ( -  e2/8)[( R + D A -  2D~) 2 + a~2] - ,/2 
+ (eZ/S)[(R_ D A_ 2D~)2 + a~2] - 1/2 
_ (e2/8)[(R + D A + 2D~)2 + a22] -  ,/2 
+ (e2/8)[(R-  D f  + 2D~) 2 + a~2] - ,/2 
+(e2/4)[(R+ Dx)A 2 q _ a 1 2 1 2  - 1 / 2  

_ (eZ/4)[(R _ / ) A ] 2  _1_ n 2 1 - 1/2 
~ 1 ]  ~ 1 2 A  

(60) 
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EQ=, Q,~,~]=(e2/g)ER2+4( DA --~21/'1B~2 -t- "q2 - -  ~22-1-1-1/2 
+ (e2/8)[R 2 + A B 2 2 - 1/2 4(D2 +D2)  +a22] 
_ (e2 /4 ) [R  2 + (2DA)2 + a22] - 1/2 
_ ( e 2 / 4 ) [ R 2  + 13 2 2 -1/2 (2D2) +a22] 
+ (e2 /4)[R  2 + a222] - 1/2 

[Q~ , ,  Qyx] = (e2/4)[  R2  + (2DA) 2 + (2D2S) 2 + a222] - ,/2 
_ (e2 /4 ) [R  2 + (2DA)2 + a22] - 1/2 
_ (e2 /4)[R  z + (2D~)2 + a22] - 1/2 
+ (e2 /4 ) [R  2 + a22]- 1/2 

[Q=,~, Q=] = (e2/8)E(R _ 2D~)2 + (2DA)2 + a2222 - t/2 
+ (e2 /S)[ (R  + 2DB)2 + (2D 2A)2 + a22] - 1/2 
_ (e2 /8)[ (R  _ 2D~)2 + a22]- 1/2 
_ (e2 /8 ) [ (R  + 2D~)2 + a~2]- 1/2 
__ (e2/4)[R2 + (2D2A)2 + a 2 2 ]  - 1_/2 

+ (e2/4)[R 2 + a 2 2 ]  - 1/2 

[ Q = ,  Q=] = (e2 /16) [ (R + 2D2 A -  2D2B) 2 + a222] - 1 / 2  

+ (e2/1 6 ) [ (R  + 2 D  # + 2D2U) 2 + a22] - 1/2 

+ (e2/16)[(R- 2D~2 - 2D~2) 2 + a~2] - ,/2 
+ (e2/1 6 ) [ ( R -  2 D  } + 2DB2) 2 + a22] - 1/2 
_ (ea/S)[(R + 2DA)2 + a222] - 1/2 

--(e:/S)E(R-2D~): +'G]- ~/~ 
_ (e2/8)[(R + 2DB)2 + a 2 2 ] -  1/2 

_ (e2/8)[(R _ 2D2S)2 + a222] - 1/2 
q._ (e2/4)ER2 q_ a 2 2 ] -  1/2 

[Q,~, Q,=] = (e2 /8)[ (R  + D ~ -  D2B) 2 + A 13 2 (D 2 _ D 2  ) +a22] -t/2 
_ (e2 /S)[ (R  + D A _  D2B)2 + (D2 A + D~)2 + a222]- 1/2 
_ (e2 /8)[ (R  + D A + D2B)2 + (D2 A_ D2B)2 + a 2 2 3  - 1/2 
+ (e2 /8)[ (R  + D A + D2B)2 + (D2 A + D2~)2 + a22] - ,/2 
_ ( e 2 / 8 ) E ( R  - A B 2 D2 _ D 2  ) +(D2A_D2B)2 +a222] - 1/2 
+(e2 /8 )E(R  - D2_D2)A B 2 + ( D ~ + D B 2 ) 2 + a 2 2 ] - I / 2  
+ ( e 2 / 8 ) [ ( R _ D A +  B 2 A B 2 D 2 )  + ( D 2 - D 2 )  + a 2 2 ]  -1 /2  
- ( - e 2 / 8 ) [  ( R -  D ~  + DB2)2 + ( D }  + D~) 2 +a=]2 -a/2 

[Q~y, Q : , y ] = ( e 2 / 4 ) E R 2 + 2 ( D A  2 -- D2 )B 2 q_ a2212 - 1/2 
+ (e2/4)ER 2 + 2(D2 A + D2B)2 + a221 - 1/2 

_ (e2 /2 ) [R  2 + 2(D2A)2 + 2(D~)2 + a222]- ,/2 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

The formulas for [#z, q], [ Q ~ ,  q], EQzz, q], [Q=,  #~], [ Q ~ ,  #=], [ Q = ,  & ] ,  
[Q=,  Q=]  are obtained from those for [q, &], [q, Q~] ,  [q, Q=], [#=, Q=],  
[#z, Q ~ ] ,  [#~, Q=] ,  [ Q ~ ,  Q=]  by exchanging D A ~+ D B, at,12 ~ al211 , and 
multiplying by ( - 1)t~ + ~, respectively. 
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